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1
FLOATING-POINT ADDER CIRCUITRY

BACKGROUND

This invention relates to performing floating-point arith-
metic operations in integrated circuits and, more particularly,
to dynamic bit extension and shifting techniques for floating-
point operations.

Floating-point operations are usually implemented in
accordance with the IEEE754 standard, which defines a float-
ing-point number as having a sign, a mantissa, and an expo-
nent, in which the mantissa is required to be normalized at all
times because the standard implies a leading “1.” However,
performing normalization can be expensive in terms of circuit
area and operational latency. Some floating-point operations
also require that the floating-point number operands be
manipulated as part of a floating-point operation. For
example, floating-point addition and subtraction require that
the mantissas of the floating-point number operands be
aligned in such a way that the exponents of the floating-point
number operands are equal.

Situations frequently arise where several floating-point
operations are executed sequentially (e.g. in an adder tree).
Such sequentially executed operations require the normaliza-
tion of the mantissa produced by a first adder stage followed
by the alignment of the mantissas entering a second adder
stage.

SUMMARY

The present invention relates to integrated circuits having
improved floating-point operation capabilities. An integrated
circuit may have circuitry that performs floating-point opera-
tions. This circuitry may receive a first floating-point number
having a first exponent and a first mantissa, a second floating-
point number having a second exponent and a second man-
tissa, and a third floating-point number having a third expo-
nent and a third mantissa. Each of the first, second, and third
mantissas may have a given precision. The circuitry may
expand the given precision of the first, second, and third
mantissas to a greater number to produce first, second, and
third extended mantissas. The greater number may be at least
greater than or equal to the given precision. The circuitry may
further right shift the first, second, and third extended man-
tissas to produce first, second, and third shifted mantissas and
compute the sum of the first, second, and third shifted man-
tissas.

It is appreciated that the present invention can be imple-
mented in numerous ways, such as a process, an apparatus, a
system, a device, instructions on a computer readable
medium. Several inventive embodiments of the present inven-
tion are described below.

In certain embodiments, when shifting the first, second,
and third extended mantissas to the right, the above men-
tioned circuitry may compare the first, second, and third
exponents to determine a dominant exponent. The dominant
exponent may be equal to a selected exponent that is greater
than or equal to each of the first, second, and third exponents.
In response to determining that the third exponent is the
dominant exponent, the circuitry may subtract the first expo-
nent from the dominant exponent to produce a first number of
bits and subtract the second exponent from the dominant
exponent to produce a second number of bits.

In other cases, the circuitry may further right shift the first
extended mantissa by the first number of bits to produce the
first shifted mantissa, right shift the second extended mantissa
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by the second number of bits to produce the second shifted
mantissa, and provide the third extended mantissa as the third
shifted mantissas.

Further features of the invention, its nature and various
advantages, will be more apparent from the accompanying
drawings and the following detailed description of the pre-
ferred embodiments.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagram of an illustrative integrated circuit in
accordance with an embodiment of the present invention.

FIG. 2 is a diagram of an illustrative single precision float-
ing-point number in accordance with an embodiment of the
present invention.

FIG. 3 is a diagram of two illustrative successive floating-
point adder stages in accordance with an embodiment of the
present invention.

FIG. 4A is a diagram of illustrative circuitry that routes two
floating-point numbers based on the size of their respective
exponents in accordance with an embodiment of the inven-
tion.

FIG. 4B is adiagram of illustrative circuitry that routes four
floating-point numbers based on the size of their respective
exponents in accordance with an embodiment of the inven-
tion.

FIG. 5 is a diagram of illustrative extended mantissas pro-
duced by dynamic bit extension in accordance with an
embodiment of the invention.

FIG. 6 is a diagram of an illustrative shifting technique to
align the mantissas of floating-point numbers in accordance
with an embodiment of the present invention.

FIG. 7 is a diagram of an illustrative normalization opera-
tion on the result of a floating-point addition in accordance
with an embodiment of the present invention.

FIG. 8 is a flow chart of illustrative steps for adding float-
ing-point numbers using dynamic bit extension and shifting
techniques in accordance with an embodiment of the present
invention.

DETAILED DESCRIPTION

Embodiments of the present invention relate to performing
floating-point arithmetic operations in integrated circuits and,
more particularly, to dynamic bit extension and shifting tech-
niques for floating-point operations.

Floating-point operations are usually implemented in
accordance with the IEEE754 standard, which defines a float-
ing-point number as having a sign, a mantissa, and an expo-
nent, and where the mantissa is required to be normalized at
all times because the standard implies a leading “1.” Further-
more, floating-point addition and subtraction require that the
mantissas of the floating-point number operands be aligned in
such a way that the exponents of the floating-point number
operands are equal in value.

Situations frequently arise where several floating-point
addition or subtraction operations are executed sequentially
(e.g., the addition of more than two numbers in a tree-like
structure). Such sequentially executed addition or subtraction
operations require the normalization of the mantissa pro-
duced by a first floating-point addition or subtraction stage
followed by the alignment of the mantissas entering a subse-
quent floating-point addition or subtraction stage. However,
normalization and alignment operations can be expensive in
terms of circuit area and operational latency.

It may be desirable to implement a pre-processing stage
that eliminates the normalization and alignment operations
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before and in between successive floating-point addition or
subtraction operations, thereby removing potential ineffi-
ciencies.

It will be obvious to one skilled in the art, that the present
exemplary embodiments may be practiced without some or
all of these specific details. In other instances, well-known
operations have not been described in detail in order not to
unnecessarily obscure the present embodiments.

An illustrative embodiment of an integrated circuit 102 in
accordance with the present invention is shown in FIG. 1.

Integrated circuit 102 may include storage and processing
circuitry 104 and input-output circuitry 108. Storage and
processing circuitry 104 may include embedded micropro-
cessors, digital signal processors (DSP), microcontrollers, or
other processing circuitry. The storage and processing cir-
cuitry 104 may further have random-access memory (RAM),
first-in first-out (FIFO) circuitry, stack or last-in first-out
(LIFO) circuitry, read-only memory (ROM), or other
memory elements. Input/output circuitry may include paral-
lel input/output circuitry, differential input/output circuitry,
serial data transceiver circuitry, or other input/output circuitry
suitable to transmit and receive data. Internal interconnection
resources 106 such as conductive lines and busses may be
used to send data from one component to another component
or to broadcast data from one component to one or more other
components. Internal interconnection resources 106 may also
include network-on-chip (NoC) or other on chip interconnec-
tion resources. External interconnection resources 109 such
as conductive lines and busses, optical interconnect infra-
structure, or wired and wireless networks with optional inter-
mediate switches may be used to communicate with other
devices.

Floating-point numbers are commonplace for representing
real numbers in scientific notation in computing systems and
are designed to cover a large numeric range and diverse
precision requirements. The IEEE754 standard is commonly
used for floating-point numbers. A floating-point number,
such as the floating-point number illustrated in FIG. 2
includes three different parts: the sign of the floating-point
number 110, the mantissa 111, and the exponent 112. Each of
these parts may be represented by a binary number and, in the
IEEE754 format, have different bit sizes depending on the
precision. For example, a single precision floating-point
number such as the floating-point number in FIG. 2 requires
32 bits, which are distributed as follows: one sign bit (bit 31),
eight exponent bits (bits [30:23]), and 23 mantissa bits (bits
[22:0]). A double precision floating-point number requires 64
bits including one sign bit (bit 63), 11 exponent bits (bits
[62:52]), and 52 mantissa bits (bits [51:0]).

According to the IEEE754 standard, a mantissa may also
have additional bits. A mantissa that has additional bits is
sometimes also referred to as an extended mantissa. For
example, an extended, single precision mantissa may have
five additional bits (i.e. an extended, single precision man-
tissa may consist of 28 bits instead of 23 bits). The last three
bits added to the right of the least significant bit represent
round, guard, and sticky bits.

Round and guard bits may provide additional accuracy
when performing arithmetic operations. For example, divid-
ing a mantissa with a ‘1”in the least significant bit position by
two may result in the round bit to become ‘1°. An additional
division by two may result in the guard bit to become “1°.
Thus, round and guard bits enable the representation of num-
bers that are smaller than a mantissa without these additional
bits may be able to represent accurately. The sticky bit may
record any bits of value ‘1’ that are shifted beyond the preci-
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sion of the mantissa by performing a logical OR operation
with the round and guard bits.

The two remaining bits are added beyond the most signifi-
cant bit position and may absorb any overtlow produced by a
floating-point arithmetic operation.

The sign of a floating-point number according to standard
IEEE754 is represented using a single bit, where a “0”
denotes a positive number and a “1” denotes a negative num-
ber.

The exponent of a floating-point number preferably is an
unsigned binary number which, for the single precision for-
mat, ranges from 0 to 255. In order to represent a very small
number, it is necessary to use negative exponents. Thus, the
exponent preferably has a negative bias. For single precision
floating-point numbers, the bias preferably is —127. For
example a value of 140 for the exponent actually represents
(140-127)=13, and a value of 100 represents (100-127)=-27.
For double precision numbers, the exponent bias preferably is
-1023.

As discussed above, according to the IEEE754 standard,
the mantissa is a normalized number (i.e., it has no leading
zeroes and represents the precision component of a floating
point number). Because the mantissa is stored in binary for-
mat, the leading bit can either be a 0 or a 1, but for a normal-
ized number it will always be a 1. Therefore, in a system
where numbers are always normalized, the leading bit need
not be stored and can be implied, effectively giving the man-
tissa one extra bit of precision.

Consider a scenario where four floating-point numbers
(e.g., A, B, C, and D) are added together. An illustrative
diagram of the addition of these four floating-point numbers
by an adder tree such as adder tree 400 is shown in FIG. 3.
Adder tree 400 may include a bit extension stage 440, an
intermediate routing stage 410, shifters 415A, 415B, and
415C, adder stages 420A, 420B, and 420C, a normalization
stage 430, and a rounding stage 435. Adder tree 400 as shown
in FIG. 3 is merely illustrative and is not intended to limit the
scope of the present invention. If desired, adder tree 400 may
have more or less adder stages, adder tree 400 may receive
three or more than four floating-point numbers, adder tree 400
may be arranged differently. For example, the order of bit
extension stage and intermediate routing stage may be
reversed; adder stage 420A may be coupled to shifters 415A
and 415B while adder stage 420B is coupled to shifter 415C
and intermediate routing stage 410, etc.

As shown in FIG. 3, floating-point numbers A, B, C, and D
may be received by bit extension stage 440. Floating-point
numbers A, B, C, and D may each have a sign, an exponent,
and a mantissa. Bit extension stage 440 may extend the num-
ber of bits that represent the mantissas of each of the four
received floating point numbers, thereby producing corre-
sponding extended mantissas.

Three embodiments of mantissa extensions are illustrated
in FIG. 5. Consider the scenario in which the floating-point
numbers are single-precision floating-point numbers (i.e., the
mantissas of A, B, C, and D are represented by 23 bits). A
mantissa extension of a single-precision floating-point num-
ber may include a leading overflow bit, and trailing round,
guard, and sticky bits (e.g., see 510 in FIG. 5); thus an
extended mantissa is represented using 27 bits. In another
arrangement, a mantissa extended by adding a leading over-
flow bit and trailing round, guard, and sticky bits may be
represented using 56 bits in the event that floating-point num-
bers A, B, C, and D are double-precision floating-point num-
bers (e.g., see 510 in FIG. 5). An adder tree such as adder tree
400 shown in FIG. 3 that uses extended mantissas according
to 510 may be able to produce a sum that is at least as accurate
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as a sum obtained under a worst case scenario using a con-
ventional IEEE754 compliant adder tree architecture (i.e., an
adder tree architecture that performs an alignment operation
before each adder stage and a normalization operation after
each adder stage).

A bit extension according to 520 in FIG. 5 in combination
with adder tree 400 may guarantee to produce a sum that is
always at least as accurate as a sum obtained using a conven-
tional IEEE754 compliant adder tree architecture when add-
ing up to four floating-point numbers. The bit extension
according to 520 may include the round, guard, and sticky bits
as well as one overflow bit for every adder stage in the adder
tree. For example, the addition of three or four floating-point
numbers requires two adder stages (i.e., two overflow bits),
the addition of five to eight floating-point numbers requires
three adder stages (i.e., three overflow bits, see 530 in FIG. 5),
the addition of nine to 16 floating-point numbers requires four
adder stages (i.e., four overflow bits), etc.

The bit extension according to 520 may use additional bits
to produce the extended mantissa, whereby the number of
additional bits depends on the precision of the floating-point
number. For example, the mantissa of a single-precision float-
ing-point number may be represented using 23 bits, and the
bit extension according to 520 may include multiples of 23
additional bits of zeroes for each additional adder stage above
one. For example, the addition of three or four floating-point
numbers requires two adder stages, and the mantissa exten-
sion of a single-precision floating-point number requires 23
additional bits of zeroes. The addition of five to eight floating-
point numbers requires three adder stages and thus two times
23 additional bits of zeroes (i.e., 46 bits of zeroes, see 530 in
FIG. 5).

The bit extension stage includes multiples of 52 bits of
zeroes in the scenario that the adder tree produces a sum of
double-precision floating-point numbers. Thus, the addition
of three or four floating-point numbers requires two adder
stages implying 52 additional bits of zeroes (see 520), and the
addition of five to eight floating-point numbers requires three
adder stages implying 104 additional bits of zeroes (see 530).

After the bit extension stage, floating-point numbers A, B,
C, and D with exponents and extended mantissas may be fed
to intermediate routing stage 410 as shown in FIG. 3. The
intermediate routing stage may determine which of the float-
ing-point numbers A, B, C, and D has the biggest exponent
and route the floating-point number with the biggest exponent
to adder stage 420A. Intermediate routing stage 410 may
route all floating-point numbers with an exponent that is
smaller than the biggest exponent together with the biggest
exponent to shifters 415. Intermediate routing stage 410 may
also route floating-point numbers with an exponent equal to
the biggest exponent to shifters 415.

An embodiment of an intermediate routing stage such as
intermediate routing stage 410 is intermediate routing stage
450 shown in FIG. 4A. Intermediate routing stage 450 may
receive the mantissas and exponents of floating-point num-
bers A and B (i.e., mantissa A and exponent A of floating-
point number A and mantissa B and exponent B of floating-
point number B). Intermediate routing stage 450 may include
a comparator 460 and multiplexers 470A, 4708, 480A, and
480B.

Multiplexers 470A and 470B may each receive the man-
tissas of floating-point numbers A and B. Multiplexers 480A
and 480B and comparator 460 may receive the exponents of
floating-point numbers A and B. Comparator 460 may com-
pare the exponents of floating-point numbers A and B. The
result of the comparison may be used to select the inputs of
the multiplexers in stage 450.
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For example, multiplexers 470 A and 480 A may be directed
by the result of the comparison to select the mantissa and the
exponent of the floating-point number with the bigger expo-
nent, respectively. Similarly, multiplexers 470B and 480B
may be directed by the result of the comparison to select the
mantissa and the exponent of the floating-point number with
the smaller exponent, respectively.

Another embodiment of an intermediate routing stage such
as intermediate routing stage 410 in FIG. 3 is intermediate
routing stage 490 in FIG. 4B. Intermediate routing stage 490
may receive four floating-point numbers A, B, C, and D.

As shown, intermediate routing stage 490 may use inter-
mediate routing stage 450 in a tree-like structure in which
intermediate routing stage 450A determines the floating-
point number with the bigger exponent between floating-
point numbers A and B, and intermediate routing stage 4508
determines the floating-point number with the bigger expo-
nent between C and D. Intermediate routing stage 450C may
receive the floating-point numbers with the bigger exponents
from intermediate routing stages 450A and 450B and produce
the floating-point number with the biggest exponent of all
four floating-point numbers A, B, C, and D.

Intermediate routing stage 410 of FIG. 3 may route all
floating-point numbers with an exponent that is smaller than
the biggest exponent together with the biggest exponent to
shifters 415. An embodiment of a shifter such as shifter 415 is
shifter 600 shown in FIG. 6. Shifter 600 may receive the
mantissa and exponent of a floating-point number such as
floating-point number J. Shifter 600 may also receive the
biggest exponent of all the floating-point numbers received
by adder tree 400 of FIG. 3. Shifter 600 may subtract the
exponent of the floating-point number from the biggest expo-
nent using a subtractor such as subtractor 610. The difference
between the biggest exponent and the exponent of the float-
ing-point number may determine the number of bit positions
that the mantissa of the floating-point number is shifted to the
right by right shifter 620.

Shifters 415 (e.g., shifters 415A, 415B, and 415C) may
provide the shifted mantissas to adders 420. Floating-point
numbers provided at the output of shifters 415 in this way
have been properly aligned.

Adder stages 420A and 420B may receive the aligned
floating-point numbers from intermediate routing stage 410
and shifters 415 as shown in FIG. 3. Depending on the signs
of the received operands, adder stages 420A and 420B may
either implement an addition or a subtraction. For example, in
the scenario that the signs of the floating-point numbers
received from intermediate routing stage 410 and shifter
415A are the same, adder stage 420A may add the received
mantissas of the floating point numbers and send the resulting
floating-point number E to adder stage 420C. Floating-point
number E may include the sum of the aligned mantissas, the
sign bit, and the biggest exponent.

In the scenario that the floating-point numbers received
from shifters 415B and 415C have a different sign, adder
stage 420B may subtract the received mantissas of the float-
ing-point numbers received from shifters 415B and 415C.
Adder stage 420B may also determine the sign bit by com-
paring the magnitude of the positive and negative floating-
point numbers. Alternatively, a subtraction operation may for
example be implemented by swapping the sign to positive,
converting the mantissa into its 2’s complement, and per-
forming an addition. The result of such an operation may be
negative. In this case, the mantissa needs to be converted into
its 2°s complement again and the sign inverted to indicate a
negative number. In this scenario, adder stage 420B may send
the resulting floating point number F, which consists of the
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difference of the mantissas, the resulting sign bit, and the
biggest exponent to adder stage 420C.

Second adder stage 420C may implement an addition or a
subtraction depending on the sign bits as explained above.
Any adder stage such as adder stage 420A, 420B, or 420C
may produce an overflow (i.e. a floating point number with
more than one bit in front of the radix point). In the scenario
that an adder stage produces an overflow, adder tree 400 may
normalize the floating point number representing the sum.
For this purpose, adder stage 420C may send the result of the
addition or subtraction to normalization stage 430.

An illustrative embodiment of a normalization stage such
as normalization block 430, which may convert the result of
adder stage 420C to the same value represented in the
IEEE754 standard format is shown as normalization stage
700 in FIG. 7. Block 710 may determine the position of a first
“1” in the overflow bits in the mantissa to identify the implied
leading “1”. The mantissa is then right-shifted in block 720 by
the number found in block 710 to obtain a leading “1”. In case
of a subtraction, the mantissa may have a number of leading
zeroes instead of leading “1” position.

Block 740 may determine the number of leading zeroes in
the mantissa. The mantissa is then left-shifted in block 750 by
the number found in block 740 to obtain a leading “1”, which
is then eliminated because the leading “1” is implied by the
IEEE754 standard.

To convert the biggest exponent, a first offset adjustment is
added to the exponent by adder 730 to account for the right
shift operation in block 720. A second offset adjustment may
be subtracted from the exponent by subtractor 760 to account
for the left shift operation in block 750. Hence, the total offset
adjustment of the biggest exponent is determined by the dif-
ference between the number of the leading “1” position deter-
mined in block 710 and the number of leading zeroes deter-
mined in block 740.

Any necessary rounding of the normalized floating-point
number is performed in block 435 of FIG. 3. Rounding in
block 435 may use different rounding schemes. For example,
rounding schemes such as round up, round down, round
toward zero (which is sometimes also referred to as trunca-
tion) or round to the nearest value, where the nearest value
may be an integer, an even value, an odd value, or a repre-
sentable value. Rounding to the nearest value may lead to a
tie. In this case, a second round to the nearest value method
may be used as a tie breaker. For example, a round to the
nearest integer method may be combined with a round to the
nearest even method as a tie breaker.

Tlustrative steps for performing a floating-point arithmetic
operation are shown in the flow chart of FIG. 8. During step
810, a floating-point arithmetic operator such as adder tree
400 in FIG. 3 may receive multiple floating-point numbers.
During step 820, the mantissas of the floating-point numbers
may be extended. For example, trailing zeroes may be added
to the mantissas to increase precision. Further trailing zeroes
may serve as round, guard, and sticky bits. Leading bits may
also be added to absorb potential overtlow.

The floating-point number with the biggest exponent
among the received multiple floating-point numbers may be
determined during step 830, and the mantissas of all floating-
point numbers may be shifted to the right during step 840. The
amount a mantissa of a given floating-point number is shifted
to the right may depend on the difference between the biggest
exponent and the exponent of the given floating-point num-
ber. Thus, the mantissa of a floating-point number with an
exponent equal to the biggest exponent may not be shifted.
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During step 850, the sum of all mantissas may be produced,
which is followed by the normalization and rounding of the
sum during step 860.

The method and apparatus described herein may be incor-
porated into any suitable integrated circuit or system of inte-
grated circuits. For example, the method and apparatus may
be incorporated into numerous types of devices such as
microprocessors or other ICs. Exemplary ICs include pro-
grammable array logic (PAL), programmable logic arrays
(PLAs), field programmable logic arrays (FPGAs), electri-
cally programmable integrated circuits (EPLDs), electrically
erasable programmable integrated circuits (EEPLDs), logic
cell arrays (LCAs), field programmable gate arrays (FPGAs),
application specific standard products (ASSPs), application
specific integrated circuits (ASICs), just to name a few.

The integrated circuit described herein may be part of a
data processing system that includes one or more of the fol-
lowing components; a processor; memory; /O circuitry; and
peripheral devices. The data processing system can be used in
a wide variety of applications, such as computer networking,
data networking, instrumentation, video processing, digital
signal processing, or any suitable other application.

Although the method operations were described in a spe-
cific order, it should be understood that other operations may
be performed in between described operations, described
operations may be adjusted so that they occur at slightly
different times or described operations may be distributed in
a system which allows the occurrence of the processing
operations at various intervals associated with the processing,
as long as the processing of the overlay operations are per-
formed in a desired way.

The foregoing is merely illustrative of the principles of this
invention and various modifications can be made by those
skilled in the art without departing from the scope and spirit of
the invention. The foregoing embodiments may be imple-
mented individually or in any combination.

What is claimed is:
1. A method for performing floating-point operations on an
integrated circuit, comprising:
receiving a first floating-point number having a first expo-
nent and a first mantissa, a second floating-point number
having a second exponent and a second mantissa, and a
third floating-point number having a third exponent and
a third mantissa, wherein each of the first, second, and
third mantissas has a given precision;
with bit extension circuitry on the integrated circuit,
expanding the given precision of the first, second, and
third mantissas to a greater number to produce corre-
sponding first, second, and third extended mantissas,
wherein the greater number is at least twice as big as the
given precision;
with shifting circuitry on the integrated circuit, right shift-
ing the first, second, and third extended mantissas to
produce first, second, and third shifted mantissas; and
producing a sum of the first, second, and third extended
mantissas.
2. The method of claim 1, wherein producing the sum of the
first, second, and third extended mantissas comprises:
with an adder, computing the sum of the first, second, and
third shifted mantissas.
3. The method of claim 2, wherein right shifting the first,
second, and third extended mantissas comprises:
comparing the first, second, and third exponents to identify
a dominant exponent, wherein the dominant exponent is
at least equal to each of the first, second, and third
exponents.
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4. The method of claim 3, further comprising:

in response to identifying the third exponent as the domi-
nant exponent, subtracting the first exponent from the
dominant exponent to compute a first number of bits and
subtracting the second exponent from the dominant
exponent to compute a second number of bits.

5. The method of claim 4, wherein right shifting the first,

second, and third extended mantissas comprises:

right shifting the first extended mantissa by the first number
of bits to produce the first shifted mantissa;

right shifting the second extended mantissa by the second
number of bits to produce the second shifted mantissa;
and

using the third extended mantissa as the third shifted man-
tissa.

6. The method of claim 3, further comprising:

determining an adjustment number based on a position of a
leading one in the sum;

right shifting the sum by a number of bits based on the
adjustment number to generate an adjusted sum; and

adding the adjustment number to the dominant exponent to
compute an adjusted exponent.

7. The method of claim 6, further comprising:

determining a number of leading zeroes of the adjusted
sum;

left shifting the adjusted sum by a number of bits based on
the number of leading zeroes; and

subtracting the number of leading zeroes from the adjusted
exponent.

8. The method of claim 1, wherein expanding the given

precision of the first, second, and third mantissas comprises:
inserting a number of overflow bits in each of the first,
second, and third mantissas, wherein the number of
overflow bits is based on a number of mantissas to be
added; and

concatenating a round bit, a guard bit, and a sticky bit to
each of'the first, second, and third mantissas to produce
first, second, and third partially extended mantissas.

9. Circuitry that performs floating-point operations, com-

prising:

at least three inputs, wherein each of the inputs receives a
floating-point number with an exponent and a mantissa
of a given precision;

a bit extension circuit that receives the floating-point num-
bers from the inputs and generates an extended mantissa
of at least twice the given precision for each of the
received floating-point numbers;

a floating-point processing circuit having inputs and out-
puts that receives the floating-point numbers with the
extended mantissas from the bit extension circuit at the
inputs and produces a sum of the floating-point numbers
at the outputs; and

an intermediate shifting stage that receives the floating-
point numbers with the extended mantissas from the
inputs and produces shifted mantissas based on the
extended mantissas and the exponents of the received
floating-point numbers.

10. The circuitry of claim 9, further comprising:

anormalization circuit that receives the sum from the float-
ing-point processing circuit and converts the sum in
accordance with a standard requiring an implied leading
bit.

11. The circuitry of claim 9, wherein the bit extension
circuit adds anumber of trailing zeroes to the mantissa of each
of the floating-point numbers, and wherein the number of
trailing zeroes is based on the given precision.
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12. The circuitry of claim 11, wherein the bit extension
circuit adds a number of leading zeroes to the mantissa of
each of the floating-point numbers to prevent overflow.

13. The circuitry of claim 9, wherein the floating-point
processing circuit comprises:

an arithmetic operator circuit that receives the floating-
point numbers with the shifted mantissas from the inter-
mediate shifting stage and computes the sum of the
floating-point numbers.

14. The circuitry of claim 13, wherein the intermediate

shifting stage further comprises:

a right shift stage having inputs and outputs, wherein the
outputs of the right shift stage are coupled to the arith-
metic operator circuit; and

an intermediate routing stage having inputs and outputs,
wherein the inputs of the intermediate routing stage are
coupled to the bit extension circuit and the outputs of the
intermediate routing stage to the right shift stage and the
arithmetic operator circuit, and wherein the intermediate
routing stage receives the floating point numbers from
the bit extension circuit and selectively routes the float-
ing point numbers to the inputs of the right shift stage
and to the arithmetic operator circuit.

15. The circuitry of claim 14, wherein the intermediate

routing stage further comprises:

a comparator that is coupled to the inputs of the interme-
diate routing stage, that receives the exponents of the
floating-point numbers with the extended mantissas, and
that generates a comparison result by comparing the
exponents of the floating-point numbers.

16. The circuitry of claim 15, wherein the intermediate

routing stage further comprises:

a circuit that is coupled to the inputs of the intermediate
routing stage and the comparator, that receives the float-
ing-point numbers with the extended mantissas and the
comparison result, that selects first and second subsets of
the floating-point numbers based on the comparison
result, and that routes the second subset and the expo-
nent of one of the floating-point numbers of the first
subset to the right shift stage and the first subset to the
arithmetic operator circuit.

17. The circuitry of claim 16, wherein the right shift stage
receives the second subset and the exponent of one of the
floating-point numbers of the first subset, and wherein the
right shift stage generates for each floating-point number of
the second subset the shifted mantissa by right shifting the
extended mantissa.

18. A method for using an integrated circuit to process at
least three floating-point numbers to perform a floating-point
operation, wherein each of the floating-point numbers com-
prises a mantissa having a given number of precision bits and
an exponent, the method comprising:

with a bit extension circuit, concatenating a number of bits
to the mantissas of each of the floating-point numbers to
produce corresponding floating-point numbers with
extended mantissas, wherein the number of bits is at
least twice the given number of precision bits, and
wherein the number of bits is based on how many float-
ing-point numbers are involved in the floating-point
operation; and

with a comparator circuit, identifying first and second sub-
sets of floating-point numbers, wherein the exponents of
the floating-point numbers in the first subset are equal to
each other and greater than the exponents of the floating-
point numbers in the second subset.
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19. The method of claim 18 further comprising:
for each of the floating-point numbers in the second subset,
computing a number of shift bits and right shifting the
extended mantissa by the computed number of shift bits.
20. The method of claim 19, wherein computing the num-
ber of shift bits for a first floating-point number in the second
subset further comprises:
computing a difference between the exponent of one of the
floating-point numbers in the first subset and the expo-
nent of the first floating-point number.
21. The method of claim 19, further comprising:
inserting a number of overflow bits in each of the extended
mantissas, wherein the number of overflow bits is based
on how many floating-point numbers are involved in the
floating-point operation.
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